
Heat kernel expansion and energy-momentum tensor for fermion field at finite temperature in

curved spacetime

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 7521

(http://iopscience.iop.org/0305-4470/26/24/025)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. phys A hfath. Gen. 26 (1993) 7521-7535. Rinted m the UK 

Heat kernel expansion and energy-momentum tensor for 
fermion field at k i t e  temperature in curved spacetime 

Xu Dian-Yant and Xu Xiao-Fengf 
t Chinese Gnke 01 Advanced Science and Technology, World Laboratory PO Box 8130, 
Beijing 1oOo80. People’s Republic of China 
and Lkpamnent of Computer Science and Technology, Peking Universily. Beijing 1W871, 
People’s Republic of China 
3 Departmen1 of Physics, Peking Universily. Beijing 100871, People’s Republic of China 

Received I1  January 1993, in final form 21 July 1993 

Abstract. The method of heat kmel expansion aI finite temperarUre in curved space is proposed. 
Weconsider the case of axcond-order opetor A(x.  0.) = -TO,  + X .  The thermal LkWitl- 
Seeley-Gilkey coeficients E,(x. &. I) (m = 0,2,4) are derived. The effective action and ihe 
energyaomentum tensor for hee fermion gas at Enite temperature in curved space are oblained. 

1. Introduction 

The heat kemel expansion, the effective action and the energy-momentum tensor at finite 
temperature in curved spacetime are important topics in thermal quantum field theory [WFrl. 
They are useful in background problems. There exist two different ways which have been 
developed in studying GFr and TQFr in curved spacetime. One of them is the usual quantum 
field method, originated by DeWitt [I] which is often used by physicists 12.31. The other 
is the geometric method, originated from Seeley [4] and Gilkey [5] which is often used by 
mathematicians [6]. 

Many people have considered the boson field at finite temperature in various special 
curved spacetime [9-13]. Only a few authors [14,15] have dealt with the more general 
static spacetime with gm = 0 but gw not constant. 

In this article we examine the effective action and energy-momentum tensor for a 
fermion field at finite temperature in static curved spacetime by heat kernel expansion and 
find the so-called anomalous terms which exist both for the boson field 1141 as well as the 
fermion field. ,,.’ 

2. Review of Gusynin’s algorithm [6] 

Let A ( x ,  Vu) be a second or higher-order differential operator, working in d dimensional 
Euclidean space, x is the coordinate. Formally we have the operator transformation 

where c is the contour in the A plane which encloses all eigenvalues of the operator A. 
Note that the parameter r is not a time coordinate, it is only an evolution parameter which 
sometimes is called the (d + 1)th fictitious time coordinate. 
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The heat kernel H = H(x ,  x‘, r ,  A )  andthemodified Green function G = G(x, x’, A, A )  
related to A are defined as 

H(x, x‘, t ,  A) E (x’le-rA‘x.v*) Ix) 

where 

1 
A - A  

G(x,  x‘, A,  A) ( ~ ‘ 1 - I x )  

or 

[A(x ,  V.) - A]G(x, x’. A, A) = (x’lx). 

It is obvious that H(x .  x‘, 5, A) satisfies the heat equation 

[& + A(x,V,) H(x ,x ’ , r ,A)  = 0. (2.4) 1 
One of the main points of Gusynin’s work is that the modified Green function in curved 

space at zero temperature can be expanded into a generalized Fourier integral as follows 

u(x,x’,k,W 
1 1 

G(x,x’ ,A,A) s ( ~ ’ 1 -  
A - A  

where i (x.  x’, k) is called phase and u(x ,  x’, k. A) is called amplitude. The argument A 
in 1 and U is omitted. f ( x ,  x‘. k) is a real biscalar function under general coordinate 
transformations and I (x,  x’, k)lx-, = 0. For flat space l (x,  x ‘ )  may be reduced to 

I(x, x’. k) = I ~ . ( x  - x‘)“ (2.6) 

(2.7) 

Next we require l ( x ,  XI, k) to satisfy the initial conditions 

The symbol { 1 denotes symmetrization in all indices, 11 denotes to take the coincidence 
limit. For detailed calculation we want to use a non-symmetrized covariant derivative of 
the form 

(2.9) 

Such quantities are obtained directly from (2.8) by reducing all terms to a certain fixed 
indices order. In such a process we must use the commutation relation of covariant 
derivatives 

(2.10) 

We, V., . . . VJx. x’, k)II = tWa,u2...emUx. x’, k)ll. 

[Vu, V P I A ~ , . ~ ~ . . . ~ ~  = - R ’ ~ l ~ p A ~ , , . ~ , ~ , ~ l + , , . . , ,  + T’upv~A., .... 
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where the Riemannian and torsion tensors are defined as follows: 

R",,~ = aerhrp - a,rAr,, t rA,arO,o - rAo,Jcro! 
T~~~ = rAa8 - rAoU 

(2.11) 

(2.12) 

and rAeo is the affine connection. In what follows we shall consider mainly the case 
of a space manifold without torsion, but our algorithm is directly applicable to the space 
manifold with torsion. 

From (2.8) and (2.10) it is easy to find the coincidence limit of the lower-order covariant 
derivatives of l ( x ,  x ' ,  k) 

uin = o uv,rn = k' (2.13a) 

u(v,, + v ,m = ~ U V , ~ I B  = o (213b) 

w?+dii = 2t(vu,BA + VoAa + VACY,~)] = 21[3va,8Ai - R'AepVri - R'p.hxVd] = 0 

then we have 

UvupAil = -$kS"izp S'.hxj = $(Rrisp + R'8.d. (2.13c) 

The second main point of Gusynin's work may be recast as follows, though he did not 
express it explicitly. As is well known the Fourier integral expansion of the delta function 
in flat space is 

In C U N ~  space with a fibre bundle structure we revise (2.14) to 

(2.14) 

(2.13 

where I (x , x') is a biscalar function in the base space sector and canies two bundle indices, 
which to some extent, is analogous to the displacement matrix in DeWitt's method [ 11. 
I ( x ,  n') satisfies the initial conditions 

arcx,xf)n = I ( X )  (2.16) 

[(V,, V,, . . . Vam x')J = 0 when m 2 1. (217) 

Similarly to the case of i ( x ,  x', k)  we need the commutation relation of the covariant 
derivatives of the tensor field in bundle space 

VplSaiur ... o, = - R A ~ , , ~ S e , , , . , , , _ , ~ , + , . . , a ~  t TAu~V~sa,m,...a, t Wu,9&lu2,.,av (2.18) 

where Wup is the bundle curvature 

we, = a,wp - apw. +[war wp1 (2.19) 
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and w. is the connection of the bundle. We shall consider only the Riemannian manifold 
without torsion, TAap = 0. 

Xu Dian-Yan and Xu Xiao-Feng 

From (2.17) when m = 1, it is obvious that 

uv,r(x,x’)g = o  (2.2Oa) 

When m = 2, we have 

u w a v 8 v ( x , a  = uv,v,r + v,vezn 

= 2V,VflI + w,, = 0 
= U2VuVpI + T A a ~ V i I  + W , d I  

then 

(2.206) 

From (2.5) we obtain 

ddk 
( A  - h)G = (x ’ lx)  = ( A ( x ,  V,) - h)(e”(’~”’*X’u(x, x’, k, A)] 

Combining (2.21) with (2.15), it follows that 

{A(x,i(VaI)+Va) -h lu(x ,x’ ,k ,h)  = I(x,x‘). (2.22) 

It must be stressed that one cannot obtain (2.22) without the help of (2.15). 
Let A ( x ,  V-) be a second-order differential operator, for instance 

A(x ,  0,) = -0 + X = - P V =  4- X (2.23) 

where X is not an operator, then 

A ( x ,  i(VaI) + v,) = (Vi)(vJ) - i o l -  ~~(PI)v,  - + x (2.24) 

and (2.22) becomes 

((PI)(VJ) -iOI -2i(PI)Va -04- X - h]u(x,x’,k,h) = ! ( x , x ‘ ) .  (225) 

Next we set 

m 
b ( X , X ’ ,  k, A) = z & Z + m ~ m ( ~ , ~ ’ ,  k, A) 0 < E < 1 (2.26) 

m=O 

and rescale 1 and h as 

(2.27) 
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Substituting (2.26) and (2.27) into (2.25) we have 

{ ~ - ~ ( o " l ) ( V , l )  -e-2A++-Ii(01) -&-'2i(VJ)V.  - U +  X ) ~ E ~ ~ " U , ( X , X ' , ~ , ~ )  
CO 

m=O 

= I ( x ,  x') .  (2.28) 

Equating the coefficients of E" on both sides of (2.28). we obtain the recursion relations 

( ( V l ) ( V , I )  -X]uo = I ( x , x ' )  ( 2 2 9 )  

{(o"L)(VJ) - X)q - i{Ol+ 2(VL)Va)u0 = 0 

((o"Pr)(V,l) -X]u,,, - i(Oi+ 2 ( P l ) V m ] u M - ,  - (0 - X)U,-Z = 0 

Solving (2.29) we obtain 

(2.30) 

m 3 2. (2.31) 

1 I ~ b l  b =  
( V * O ( ~ O  - 1 (V,l)(Val) -A. 

1 
U0 = 

Since 

! l (VJ) (P l ) l  = k,k' = k2 

then 

1 
kZ - X [b]  = - B Buol = B I .  

Solving (2.30) we have 

01 = ibI(U0uo + 2(Vi)(V,uo)) .  

Since 

ooin = u v v , i n  = o 

then 

Uud= 2iBk"[[V,u0~ = 0. 

Similarly we derive 

UV@oN = -2iB2kAkr1,0A, + B I .  

US) = -2B3keku(lAAi,p + lAaA,+) - B2X. 

In the above expressions, we have introduced the symbols 

Uv=@...d(x, X I 9  k ) l  krl  oo...Ar 

uvV,d(x,  x')n  imp,..^. 

(2.32) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 
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3. The heat kernel expansion at finite temperature 

The zero temperature formalism can be extended to finite temperature. We assume the 
curved spacetime is static or quasi-static and the metric can be written as follows: 

dsz = g,pdrcLdlp = gwdt' + g i j d x ' d x j  (3.1) 

gm and gij  are independent of time t for the static case, and for the quasi-static case, they 
vary very slowly with time t. We only consider the static case in this paper. 

In TQFT one considers the ensemble averages of the operator 6. For the canonical 
ensemble, we have 

Xu Dian-Yan and Xu Xiao-Feng 

i, j = 1,2,. . . , (d - 1). 

where 
field Hilbert space. 

(antiperiodic) 

is the second quantized field Hamiltonian and the trace is taken over the quantum 

It can be shown that 181 the Green function or propagator at finite temperature is periodic 

Gh(x, x')  = G,&, r ,  d, r ' )  = *Gh(z,  t +pa. d, t') = *CA(", t ,  z', r' +Bo). (3.3) 

The periodic (antiperiodic) property of the thermal Green function in the t variable for boson 
(fermion) fields is usually interpreted as broken spacetime symmetry. One must remember 
that t is not a real physical variable in the sense that time is, it is only a formal device for 
introducing thermal properties. 

At finite temperature, we revise equation (215) for the fermion field as 

and we propose that the generalized Fourier transformation of the thermal modified Green 
function for the fermion field is 

(3.5) 
The reason that (3.5) holds is that l/(A(x, Vu) - A) is a differential operator, and not a 
quantum field operator. 

From (3.5) we obtain 

X [ A ( x ,  V,) - A } ( e d l x ~ x ' ~ k ' ~ ( x , x ' ,  k ,  A)} 

eillx,x',kl { i ( x ,  i(Vul) + 0,) - A ) o ( x , x ' ,  k, A). (3.6) 
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Combining (3.6) with (3.4). one arrives at 

( A ( x ,  i(V,l) + V,) - A}u(x, x ' ,  k, A) = I ( x ,  x')  (3.7) 

which is the same as (2.22). derived in the zero temperature case. 

temperature is 
From (3.5) it follows that the heat kemel expansion for the fermion field at finite 

(3.9) 

(3.10) 

(3.1 I )  

Note that [um](x, k, A) is proportional to k,,k,, . . .km. It is obvious that Hif'(x, bo, r )  = 0 
when m is odd and H i f ' ( x .  Bo, r )  # 0 when m is even. If we change the scale of k and A 
as 

k k' = 7-'I2k A -+ A' = r-'A (3.12) 

(3.13) 

(3.14) 
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then (3.1 I )  becomes 

X u  Dian-Yan and Xu Xiao-Feng 

H ~ " ( x , f l o .  r )  = r'"-d)nEhn(x,jo,r) 

where 

(3.14) 

(3.15) 

are called the thermal DeWiaSeeley-Gikey coefficients. 

m = 0 , 2 , 4  for the fermion field as follows (appendix A): 
From (3.15) we derive the thermal DeWitt-SeeleyGilkey coefficients Ehf)(x ,  BO, r ) ,  

where 

0 = BO = constant 

(3.16) 

(3.17) 

(3.18) 

and &(zl?) is the theta function, ? = ip2/4xr is the period. z = 2rj ,  j is a non-negative 
integer. 

When flo = (I/To) + 00 the temperature TO = (1/b) -+ 0, and equation (3.17) be 
reduced to 

(3.19) 

where E&) is the zero temperature DeWitt-Seeley-Gilkey coefficient. The second term 
of (3.17) is an anomalous term which approaches zero when Ba --* 0 and + 00 or 
TO -+ 00 and -+ 0. It is finite if '70 # 0 and To # 00 and there is no  em temperature 
partner' of it. 

Similarly we obtain Eib'(x,  B, r )  for the boson field 
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The difference between Eif’(x, Bo, r )  and E$”(x, bo, r )  is that one replaces c = l ( - l ) ”  
in the fermion field by cZl in the boson field. Note that Eib’(x. Bo, r )  also contains an 
anomalous term. 

By using the formulas (3.15), (A3), (M), (BZ), and after a lengthy calculation, we 
obtain the thermal Eif ’ (x ,  bo, r )  coefficient for the fermion field as 

12 
1 1 1 
6 2 6 

--XR + -Xz - -OX + @&I?) + Akf’(x,Bo, 5 )  

where Ai”(x. Bo, r )  denotes the anomalous term which is very complicated. 

4. The effective action and energy-momentum tensor 

The effective action for the fermion field at finite temperature in four-dimensional spacetime 
is [2] 

-I- anomalous terms). (4. I ) 

Note that we choose the heat kernel expansion of type I in (4.1) (appendix C). After some 
straightforward calculation, equation (4.1) is reduced to 

E & ) + . . .  1 1  
where y = 0.57221 is the Euler constant and 

Y f ( S )  = 1 - 21-5 for s = 2,4 , .  . . . 

For the boson field one replaces Y,(s) in (4.2) by rb(S) 

Y b ( S )  = 1 for s = 2.4, . . . . 

(4.2) 

(4 .3~~)  

(4.36) 



7530 

If one uses the heat kemel expansion of type U, one obtains the effective action for the 
fermion field at finite temperature: 

Xu Dian-Yan and Xu Xiao-Feng 

(4.4) 

where k,(z) is the modified Bessel function of the third kind. 
The contribution of the anomalous term in (C8) to the effective action is 

m 1 - - 
3 k 2  .=I 

It is easy to show that, for metric (3.1) 

Viv'(lngw) (Ing0o);i;' = -2RE. 

Comparing (4.4) and (4.5) with (2.22) of [14], we see that: 

(i) The three main terms 

are the same, if we set X = m2 and replace Yf(s) by Y&). 
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(ii) (1/96rrZ)XR: is equal to -(m2/192nz)V~VV'(lngao) (we think that the authors of 

The energy-momentum tensor of the fermion field at finite temperature in four 
[141 have missed the first term of (4.5)). 

dimensions in a one-loop approximation is 

1nZh . (4.6) w =  -- (f) 2 6  2 6  T(nD8 = -- 
"%8 m a g @  

Substituting (4.2) into (4.6) the energy-momentum tensor corresponding to the heat kemel 
expansion of type I is given by 

T")on = -Yf(4)7gw<(4)j34 3 - Y f ( 2 ) ~ j 3  1 -2 [gw (:R - X) + 3 R w ]  1 
7I 

+ g T y  + z I ~ ~ I E ~ ( x ) + . . .  (4.7) 
and 

+ g"[y + z ~ ~ z ] E ~ ( x )  + . . . . (4.8) 
Substituting (4.4) into (4.6). we obtain the energy-momentum tensor corresponding to heat 
kemel expansion type IF 

( i R - X )  

+ & b y  - I + In (:X@')] X R -  & [ y  - - 3 1  + - In ( ;X,9 ' ) ]  X2 1 
4 2  

3 1  
X R - -  

[ y  - 4 + ln($xpz)] ~ 2 )  

(4.10) 
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The contribution of the anomalous term to the energy-momentum tensor is 

Xu Dian-Yan and Xu Xiao-Feng 

and 

(4.11) 

(4.12) 

To simplify the calculation we have assumed that X is independent of the metric gao in 
deriving (4.8) to (4.12). 

S. Summary and discussion 

We have derived the heat kernel expansion coefficients E,?(x. b. r )  and FAn(x. BO, r ) ,  
m = 0,2,4,  the effective action and the energy-momentum tensor for a fermion field at 
finite temperature in the general static curved spacetime. The results (4.4), (4.9) and (4.10) 
essentially agree with (2.20) and (3.la.b) of [4] for a boson field if Yj(s)  is replaced by 
Y&) in the corresponding equations. However, there exists a little difference. since we 
assume that X does not involve 5 R. 

The apparently different forms of (4.2) and (4.4) and the corresponding energy- 
momentum tensors are not really different, they are merely different resummations. 

The algorithm used here does not utilize the Riemannian normal coordinates (RNC). 
Equation (2.8) plays the same role in momentum space representation as RNC do in the 
usual spacetime representation. 

The role of the parameter r is similar to the parameter is of 11.21, yet we use the Euler 
transformation instead of the Mellin transformation. 

X may involve or be equal to the mz term but we did not introduce the operator a/aX. 
The heat kernel expansion is, in fact, a geometric regularization technique. 
Each one of Ek”(x, Bo, r ) ,  E f ’ ( x ,  b. T), Flf’(x, BO, r )  and F$*’(x, b. r )  has their 

own anomalous term. It is a universal property that the heat kernel expansion coefficients 
at finite temperature in curved spacetime contain anomalous terms, which need to be studied 
further. 

The algorithm used may be directly extended to spacetime with torsion, and to higher- 
order differential operators, for instance, a fourth-order differential operator, which is related 
to quantum gravity [la, 171. 
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Appendix A 

From (3.15) the thermal DeWtt-Seeley-Gikey coefficient Ei"(x, BO, r )  is given by 

1 - B2X 

If the spacetime is static and the metric may be written as (3.1), the parmeer  k, can be 
decomposed into k, = {ko, i,], where ii does not contain ko component 

Using the integration formula 

where g(,,,,,,.,,) is the symmetrized combination of metric tensors (it involves (2s - l)!! 
terms), for instance, 
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where 

X u  Dian-Yan and Xu Xiao-Feng 

2'p! P -  
cl - l ! ( p  - 1)!(21 - I)!! 

finally, we obtain 

where j3 = ,&'& and = constant. 



We have derived (C6XClO) by a direct method of operator formalism utilizing the 
Baker-Campbell-Hausdofi formula [ZO]. On the other hand, it is not difficult to derive 
(Clb(C5) from (C6HClO) by expanding e-rX in a power series, and rearranging or 
recollecting terms according to the powers of 7.  
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